青岛大学 657数学分析 2017年
青岛大学2017年硕士研究生入学考试试题科目代码:657科目名称:数学分析(共2页)请考生写明题号,将答案全部答在试题纸上,答在试卷上无效。一、计算下列各极限:(每题5分,共10分)(1)limn→∞(11∙2+12∙3+⋯+1n∙(n+1));(2)limx→01+x−1−x31+x−31−x.二、(20分)证明:fx=x在[0,+∞)上一致连续。三、(20分)设函数f(x)在点x0处存在左右导数,试用ε−δ定义证明:f(x)在x0处连续。四、(20分)设函数f(x)在[a,b]上可导,证明:存在ξ∈(a,b),使得2ξfb−fa=b2−a2f'(ξ)五、(每题5分,共15分)计算下列各积分...
2024-02-11
441.99KB 2 页 999+